

HL9900

HALL EFFECT **Measurement**

The Toho Technology HL9900 is a turn-key, high performance Hall System for the measurement of resistivity, carrier concentration and mobility in semiconductors. Modular in concept, allowing easy upgrade paths, the system is suitable for a wide variety of materials, including silicon and compound semiconductors and metal oxide films

Configurations

Measurement Head

The standard system configuration is suitable for sheet resistivities of 0.1 m Ω /square to in excess of 1 M Ω /square. The measurement head is supplied with a two-temperature measurement stage complete with removable dewar and four micromanipulator probes.

Buffer Amplifier

The HL9980 high impedance buffer amplifier/current source is available, extending sheet resistivity measurement capability to $100~\rm G\Omega/s$ quare and source currents to as low as 1 pA. Close proximity of the module to the sample, along with the use of driven guards, ensures minimization of cable capacitance effects. A special shielded sample holder is supplied (room temperature operation only).

Magnet

Type Permanent with field reversal by magnet

Field Strength ±1% of marked value

Stability 0.1% over 10 years

Uniformity ±% over 25 mm diameter from center

Pole Gap 33.4 mm Max Meas. Diameter 25 mm

Alt. Field Strengths 0.5 T (nominal) [Available as an Option]

Features

AC/DC measurement modes. The use of AC currents and phase sensitive detection eliminates thermal effects, long term drifts and significantly enhances signal-to-noise ratios. DC mode is useful when rate dependent trapping, rectification due to non-ohmic contacts² or stray capacitances may affect AC currents

- Simple probe system for convenient, fast sample throughput
- · Compact bench top design
- Wide current range including autocurrent facility in order to minimize sample heating
- User defined electric field limitations to avoid impact ionization effects at low temps.
- Rare earth permanent magnet giving excellent stability
- Light-tight sample enclosure avoiding measurement errors due to photo generated effects
- Electro-forming circuitry for contact formation

Configurable Features

- High impedance buffer amplifier/current source to extend sheet resistivity measurements to $10^{11}~\Omega/\text{square}$
- Probe system allowing rapid sample set-up for room temperature and 77 K assessment of wafers up to 3-inch diameter¹

Toho Technology Inc.

4809 N. Ravenswood Ave. Suite 113 Chicago, Illinois 60640 773.583.7183 www.tohotechnology.com

HL9900

HALL EFFECT Measurement

Software

- · Support for van der Pauw, Hall Bar and Bridge Samples
- · Integration, delay & repeat measurement modes increases flexibility and accuracy on difficult to measure samples
- · Easy export and storage of data and images for incorporation in other Windows applications.
- · Contact verification including I-V curve tracker
- · Electro-forming process for the formation of ohmic contacts
- · Correction algorithms for surface and interfacial depletion effects.
- · Correction for Hall Scattering Factor
- · Control of all measurement functions, data reductions

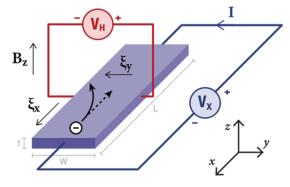
Standard System

+++ 24 --1 -1.72e94 +1.84e94 +1.89e94 -5.95e95 4 +1.81e-94 -9.55e03 +9.54e-93 -9.27e-93 +9.30e-93 +9.53e-93 -9.37e-93 -9.44e-93 -9.44e-93 -9.44e-93

Sample of Software Running on Windows 95

Specifications

Current Source


Current Source	Standard System	IIL9900
Range	100 nA - 19.9 mA	1 pA -10 μA
Compliance	20 V	20 V
Output Impedance	10 ¹⁰ Ω	>10 ¹³ Ω
Voltage Measure		
Input Impedance	10 ¹⁰ Ω	$10^{13} \Omega$ in parallel with
Input Voltage Operating Range	±6 V	3 pF input ±6 V
Input Leakage Current	20 nA per input (typical)	40 fA per input (typical)
Current Input Voltage Leak	0.8 µV pk-pk at 0.1 - 10 Hz (typical) 15 nV/√Hz at 213 Hz	4.0 μV pk-pk at 0.1 -10 Hz (typical)
Measurement Modes	AC (213 Hz)/DC	DC
Sample Inputs	Coaxial	Two-lug female coaxial BNC with driven screen. Guard to input potential <100 µV

HI 9980

Dry Reed

Options

HL9900/M50	0.5 T Magnet (nominal)	
HL9901	Spare Two-Temperature Stage	
HL9902	Spare Teflon Sample Dewar	
HL9903	3-inch Teflon Sample Dewar	
HL9904	Calibration Set	
HL9910	Additional Two Probes	
HL9980	High Impedance Buffer Amplifier / Current Source	
All systems supplied with current version of Windows.		

Hall Effect Diagram

Industry Standard Original Nanometrics core technology inside

Dimensions (not including CPU)

FET

Measurement Head 535mm (W) x 700mm (D) x 295mm (H) Instrumentation Unit 280mm (W) x 400mm (D) x 150mm (H)

Weight

Contact Switching

47.8 kg Measurement Head Instrumentation Unit 9.0 kg

¹ Using optional HL9903.

² Not available when HL9980 is fitted.